Árvores de Fenwick

Tópicos Especiais em Algoritmos – Ciência da Computação

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga

Sumário

- Introdução
- 2 Fenwick Trees

Introdução Fenwick Trees

Sumário

Introdução

Introdução

• Problema: dada uma sequência V[0, n-1] e índices $0 \le i \le j < n$, responder:

$$\sum_{k=i}^{j} V[k]$$

Introdução Fenwick Tree

Algoritmo Força-Bruta

- Um algoritmo força-bruta apenas varre o vetor sobre o intervalo considerado e faz a soma.
- Pior caso: $\Theta(n)$ por consulta.

Algoritmo Força-Bruta

Algorithm 1: BRUTE-FORCE(V, i, j)

Input:
$$V[0, n-1], i, j, 0 \le i \le j < n$$
Output: $\sum_{k=i}^{j} V[k]$

- 1 $sum \leftarrow 0$
- 2 for $(k \leftarrow i; k \leq j; k++)$
- $\mathbf{3} \quad \bigsqcup \ sum + = V[k]$
- 4 return sum

Buscando Outra Estratégia

- É possível melhorar a nossa abordagem.
- Para simplificar: vamos supor que a nossa sequência está armazenada V[1,n] agora e que V[0]=0.
- Vamos computar uma soma de prefixos da seguinte forma:

$$C[i] = \sum_{k=0}^{i} V[k]$$

Buscando Outra Estratégia

	0	1	2	3	4	5	6	7	8	9	10
V	0	1	3	2	5	2	8	7	3	0	4

Buscando Outra Estratégia

- Como responder $\sum_{k=i}^{j} V[k]$, $1 \le i \le j \le n$ utilizando C?
- \bullet Simples, como $C[i]=\sum_{k=1}^{i}V[i]$, então podemos calcular o somatório do intervalo [i,j] da seguinte forma:

$$\sum_{k=i}^{j} = C[j] - C[i-1]$$

 \bullet $\Theta(1)$.

$$\sum_{i=3}^{7} V[i] = C[7] - C[2] = 28 - 4 = 24$$

Introdução Fenwick Trees

Soma de Prefixos

• A computação de C pode ser feita em $\Theta(n)$ com uma simples varredura da esquerda para a direita em V.

Algorithm 2: PREFIX-SUM(V, C)

Input: V[0, n], V[0] = 0

Output: C[0,n]

- $\mathbf{1} \ C[0] \leftarrow 0$
- **2 for**($i \leftarrow 1; i \leq n; i + +$)
- $\mathbf{3} \quad \bigsqcup \ C[i] \leftarrow V[i] + C[i-1]$

- ullet Com a soma de prefixos, podemos responder qualquer pergunta em tempo constante após calcular C.
- Tempo de pré-processamento: $\Theta(n)$.
- Tempo por consulta: $\Theta(1)$.
- $\langle \Theta(n), \Theta(1) \rangle$.

- A estratégia utilizando soma de prefixos é excelente!
- ullet Mas existe um problema, só funciona no caso estático, em que V não muda.
- ullet No caso dinâmico, temos que recomputar C a cada mudança.
- Levamos $\Theta(n)$ para atualizar C no pior caso.
- Precisamos de uma estrutura que funciona bem para o caso dinâmico.
- Alternativa: **Fenwick-Trees**. Tempo $\langle \Theta(n), \Theta(\lg n) \rangle$ permitindo atualizações em tempo $\Theta(\lg n)$.

trodução Fenwick Trees

Sumário

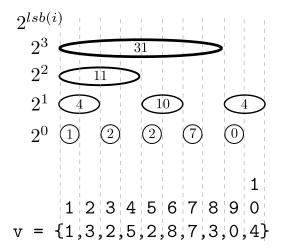
- As Fenwick Trees foram propostas por Peter Fenwick na década de 90.
- São baseadas em um truque utilizando aritmética computacional e representação binária.
- Na prática conseguem responder as consultas de soma sobre intervalos de uma maneira bem rápida.
- Vamos definir o objeto de cálculo.

- Seja lsb(i) a posição do bit 1 menos significativo de i em sua representação binária.
 - $lsb(10) = lsb(1010_2) = 1$
 - $lsb(3) = lsb(11_2) = 0$
 - $lsb(16) = lsb(10000_2) = 4$
- ullet A Fenwick Tree FT é um vetor FT[0,n] em que

$$FT[i] = \sum_{k=i-2^{lsb(i)}+1}^{i} V[k]$$

	0	1	2	3	4	5	6	7	8	9	10
V	0	1	3	2	5	2	8	7	3	0	4

	0	1	2	3	4	5	6	7	8	9	10
FT	0	1	4	2	11	2	10	7	31	0	4
Intervalos		[1, 1]	[1, 2]	[3, 3]	[1, 4]	[5, 5]	[5, 6]	[7, 7]	[1, 8]	[9, 9]	[9, 10]



trodução Fenwick Trees

Sumário

- Penwick Trees
 - Construção
 - Consultas
 - Atualização
 - Análise

rrodução Fenwick Trees

Construção de Fenwick Trees

- Para construir a Fenwick Tree, podemos utilizar o vetor C de soma de prefixos para computar cada intervalo considerado por cada nó.
- ullet Como os inteiros normalmente estão representados em binário através do complemento de dois, o valor de $2^{lsb(i)}$ pode ser computado de uma maneira muito eficiente.

Construção de Fenwick Trees

- Tome x=a1b, em que a representa os bits mais significativos de x, 1 representa o bit 1 mais à direita de x, e b uma sequência de zeros ao final de x.
- Sabemos que, pela representação computacional usando complemento de dois, temos: $-x = \sim x + 1$.
- Como $\sim (x) = \sim (a1b) = (\sim a)0(\sim b)$, temos que $\sim (a1b) + 1 = (\sim a)1b$.
- Usando o operador de & bit a bit na expressão (x&-x) temos exatamente o valor de $2^{lsb(x)}$.

Construção das Fenwick Trees

$$a \quad 1 \quad b \\ \sim a \quad 1 \quad b \\ 00 \dots 0100 \dots 0$$

Construção de Fenwick Trees

Algorithm 3: BUILD-FT

```
\textbf{Input: } C[0,n]
```

Output: FT[0, n]

- $\mathbf{1} \ FT[0] \leftarrow 0$
- $\mathbf{2} \ \mathbf{for} (\ i \leftarrow 1; i \leq n; i++\)$
- 3 $\lfloor FT[i] \leftarrow C[i] C[i (i\& i)]$

rrodução Fenwick Trees

Fenwick Trees

Construção

• A Fenwick Tree pode ser construída a partir da soma de prefixos C em tempo $\Theta(n)$, uma vez que a soma sobre cada intervalo é respondida em tempo $\Theta(1)$.

trodução Fenwick Trees

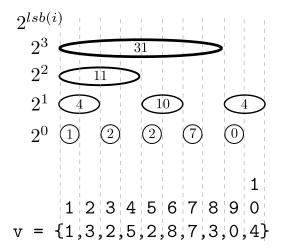
Sumário

- Penwick Trees
 - Construção
 - Consultas
 - Atualização
 - Análise

odução Fenwick Trees

Consultas sobre Fenwick Trees

- Mostraremos agora como utilizar a Fenwick Tree para responder a consulta de soma sobre o intervalo V[1,i] para algum $1 \le i \le n$.
- \bullet O nó FT[i] contém a informação da soma de $V[i-2^{lsb(i)}+1,i].$
- Seja $i'=i-2^{lsb(i)}$. Recursivamente podemos conseguir mais um pedaço da informação de V[1,i] olhando para FT[i'], que possui o valor da soma de $V[i'-2^{lsb(i')}+1,i']$.
- Caso base: i' = 0.



Construção de Fenwick Trees

Algorithm 4: SUM

Input: FT[0, n], iOutput: $\sum_{k=1}^{i} V[k]$

- 1 $sum \leftarrow 0$
- 2 while i > 0 do
- sum + = FT[i]
- **4** [i-=(i&-i)]
- 5 return sum

rodução Fenwick Trees

Consultas sobre Fenwick Trees

- ullet Utilizando a mesma ideia da soma de prefixos, é possível utilizar a Fenwick Tree para responder uma soma sobre um intervalo V[i,j].
- ullet Basta considerar subtração das somas sobre V[1,j] e V[1,i-1].

Consultas de Fenwick Trees

Algorithm 5: SUM

Input: FT[0,n], i,j

Output: $\sum_{k=i}^{j} V[k]$

1 return $FT.\mathrm{SUM}(j) - FT.\mathrm{SUM}(i-1)$

odução Fenwick Trees

Consultas de Fenwick Trees

- O tempo para cada consulta sobre uma Fenwick Tree é $\Theta(\lg n)$.
- Cada operação i-=(i&-i) efetivamente escreve 0 no bit menos significativo com valor 1 de i.
- Como gastamos w bits para representar um inteiro a cota está justificada, pois $w \in \Theta(\lg n)$. (Modelo RAM)

trodução Fenwick Trees

Sumário

- Penwick Trees
 - Construção
 - Consultas
 - Atualização
 - Análise

rodução Fenwick Trees

Atualização de Valores

- Até o momento não ganhamos nada com as Fenwick Trees.
- Utilizar soma de prefixos para responder uma consulta leva tempo $\Theta(1)$ contra $\Theta(\lg n)$ da Fenwick Tree.
- A grande utilidade das Fenwick Trees é a habilidade de poder atualizar valores em tempo $\Theta(\lg n)$.

Atualização de Valores

- ullet Suponha que queremos atualizar V[i].
- As mudanças devem ser propagadas nos nós da Fenwick Tree.
- Sabemos que um nó FT[j] da Fenwick Tree cobre o intervalo $[j-2^{lsb(j)}+1,j]$. Temos que atualizar todos os nós FT[j] cujo intervalo contém i. Em outras palavras, atualizamos FT[j] sempre que $j-2^{lsb(j)}+1\leq i\leq j$.
- Processo simétrico ao da soma, mas incrementamos i de $2^{lsb(i)}=(i\&-i)$ unidades.

Atualização de Valores

Algorithm 6: UPDATE

Input: $FT[0,n], i, \Delta$

- 1 while $i \leq n$ do
- $\begin{array}{c|c} \mathbf{2} & FT[i]+=\Delta \\ \mathbf{3} & i+=(i\&-i) \end{array}$

odução Fenwick Trees

Atualização de valores

• As atualizações podem ser feitas em tempo $\Theta(\lg n)$.

trodução Fenwick Trees

Sumário

- Penwick Trees
 - Construção
 - Consultas
 - Atualização
 - Análise

odução Fenwick Trees

Análise das Fenwick Trees

- As Fenwick Trees são uma excelente opção para responder a consulta de soma sobre intervalos em tempo $\langle \Theta(n), \Theta(\lg n) \rangle$.
- Estrutura dinâmica, suporta atualização em tempo $\Theta(\lg n)$.
- Implementação extremamente enxuta e elegante baseada em aritmética computacional.
- Muito rápida na prática.