
Chapter 1: Introduction to SaM

1.1 Introduction
Have you ever heard the Java mantra, “write once, run everywhere?” So, how does that work?
When you compile a Java program, you generate a binary file that contains byte-code. Byte-code
is a collection of instructions that resemble machine code. However, you cannot simply run the
byte-code on your computer because the byte-code is written for a “virtual computer,” which we
call the Java Virtual Machine (JVM). To run your actual Java program from the JVM, most
computers have a byte-code interpreter that converts each byte-code instruction for the particular
architecture that you use. By learning about the JVM, you can learn about how programs are
compiled and executed on a computer.

1.2 Stack Machine
1.2.1 SaM

We do not have the time to study the complete JVM*, so we will be simulating the JVM with
SaM. SaM is a software package developed by Professor Keshav Pingali to simplify the JVM.
SaM stands for Stack Machine. A stack machine is essentially a device that pushes and pops
information from a stack, which is a data structure that stores items in “last-in, first-out” order.
Since the JVM uses stacks to store information, SaM provides a relatively easy and graceful way
to learn about the JVM and compilers.
You will write code in Samcode, which is SaM’s pseudo-assembly code that mimics actual
assembly code. However, you will not actually generate binary files as you do for the JVM.
Samcode mimics assembly code, which has the form op-code operand. For instance,
PUSHIMM 3 has the op-code PUSHIMM and operand 3. When SaM encounters this instruction,
SaM puts the value 3 on top of its stack of data. As you work your way through this document
you will learn more about SaM’s environment, internal structure, and more Samcode instructions.

1.2.2 SaM Values and Types
SaM has a variety of data types. For now, we will focus on integer and memory, though we will
learn others later. The limits of SaM’s integer type are identical to those of Java. To simulate
Boolean values, you can use integer 0 for false non-zero integers for true. Value of type memory
are represented as integers and refer to locations in SaM’s memory, which is explained in the next
section.

1.2.3 SaM Memory
SaM has two areas of memory that you will use. These are called program and stack:

• Program: Main memory where SaM loads the user’s program prior to execution. The
user’s program is a collection of Samcode instructions, which you will see in Section 1.3.

• Stack: Memory in CPU where SaM stores data during the execution of the program.

* Interested in seeing actual JVM byte-codes? See http://java.sun.com/docs/books/vmspec/ for a free on-line book.
1/13

http://java.sun.com/docs/books/vmspec/

Chapter 1: Introduction to SaM 2/13
SaM also contains other smaller areas of memory in the processor called registers to store
counters that keep track of information about a program. SaM’s PC, SP, FBR, HP, and HALT
registers all store non-negative integers and have the following purposes:

• PC (Program Counter): contains the address of the Samcode instruction that SaM is
currently executing.

• SP (Stack Pointer): contains the address of the first free location on the stack. The first
address in the stack is 0. The subsequent addresses increment by one. For now, assume
that the stack has unlimited address space.

• FBR (Frame Based Register): contains information to help keep track of function calls.
We will assume an FBR of 0 for this assignment.

• HP: contains information about objects. We do not need this register in this assignment.
• HALT: SaM has a special internal register that keeps track of whether or not SaM should

stop processing instructions.

1.3 SaM Instructions
This section provides an overview of a portion of the SaM instruction set. You may not need all of
these instructions for this assignment. We will introduce more instructions later as we develop
functions and classes.

1.3.1 Classifications
SaM has four classifications of instructions:

• ALU (Arithmetic/Logic Unit) instruction: These instructions perform arithmetic and
logical operations, which include addition, subtraction, logical and, logical or, etc. on
integers. When SaM performs an ALU instruction, the operands of the instruction are
popped from the stack. If there is a result, it is pushed on top of the stack. Note that some
ALU instructions have only one operand.

• Stack manipulation instruction: These instructions copy a value from one location in the
stack to another.

• Register save/restore instruction: These instructions permit the values of the registers to
be pushed and popped from the stack.

• Control instruction: These instructions implement conditional and unconditional transfer
of control in the program.

• I/O instruction: Input and output instructions to communicate with the user and devices.

The instructions are stored in the program area of memory. After the execution of an ALU, stack
manipulation, or register instruction, control transfers to the next instruction in program memory.
A control instruction “moves” execution to another instruction in program memory.

1.3.2 The Stack Memory and Stack Pointer
SaM’s stack area of memory is essentially a column in which you can place “items” (integer
values) in cells above each other. SaM addresses each cell, starting from 0. For the first instruction
that generates a result, SaM will store that value in this first cell. The next result gets stored in the
cell with the address of 1, which is above the first cell, and so forth. To help keep track of which
cell is empty, SaM uses the SP (stack pointer) register to “point” to the next free cell. How does
SP “point” to a cell? Since the SP stores only nonnegative integers, by storing the address of the

Chapter 1: Introduction to SaM 3/13
next free cell in SP, SaM can retrieve that free address from the SP whenever a program requires
something pushed or popped from the stack.
For an example of this process, refer to Figure 1.1. You can see the results of two instructions that
pushed the values of 10 and then 20 onto the stack and moved SP at each step. The process went
as follows:

• First, SP started at 0.
• Next, SaM pushed 10 into that cell address and incremented SP to 1.
• Next, SaM pushed 20 and incremented SP to 2.

SaM keeps track of cell addresses and register values, as you will see in later sections.

1.3.3 Instruction Set: “Some of SaM”
An instruction set is the complete collection of the instructions that a CPU uses. We provide a
portion of SaM’s instruction set in Section 1.3.3.1, Section 1.3.3.2, Section 1.3.3.3, and Section
1.3.3.4. Refer to the SaM documentation on the CS212 website for the complete set.
Many instructions operate on operands, which are stored in the stack and are, thus, sometimes
called stack elements. We denote a stack element at location as . Assume that and

 refer to the top-most element and the element below it, respectively, before an instruction
is executed. As discussed in the previous section, SaM’s stack pointer (SP) always points to the
first free location on the stack. Therefore, you can express and as follows:

(1)

and

. (2)

For a command that needs the and operands, SaM will pop them before pushing any
results onto the stack. Note that all op codes are strictly uppercase! We do not show many of the
available SaM instructions because we do not need them yet.

1.3.3.1 ALU Instructions
ADD Push .
SUB Push .
TIMES Push .
DIV Push .

Figure 1.1: Stack Memory

10 0

 20 1

2SP

Cell Address

i Vi Vtop
Vbelow

Vtop Vbelow

Vtop VSP 1–=

Vbelow VSP 2–=

Vtop Vbelow

Vbelow Vtop+
Vbelow Vtop–
Vbelow Vtop×

Vbelow Vtop⁄

Chapter 1: Introduction to SaM 4/13
NOT Push .
OR Push .
AND Push .
GREATER Push .
LESS Push .
EQUAL Push .

1.3.3.2 Stack Manipulation Instructions
PUSHIMM c . Push the value , which is an integer.
DUP . Duplicate top element.
SWAP Exchange the top two elements on the stack.
PUSHABS k Push .
STOREABS k .
PUSHOFF k Push .

Push V[k] at an offset of FBR; assume FBR=0 for now.
STOREOFF k .

Store V[k] at an offset of FBR; assume FBR=0 for now.

1.3.3.3 Register Save/Restore Instructions
ADDSP c . c is an integer.

1.3.3.4 Control Instructions
STOP .

1.3.4 SaM Programs
A SaM program is a text file that contains a collection of Samcode instructions along with
optional comments and labels:

• Comments begin with //. Any text on the same line following // belongs to the
comment.

• SaM ignores comments and blank lines.
• Each instruction must be written in entirety on the same line.
• An instruction may be given a label, which is discussed in the next assignment.

For example, you can write Samcode that continues the example shown in Figure 1.1. The
following Samcode program (equal.sam) pushes two values (10, then 20) on the stack, checks
if they are equal, returns the result of 0 (because) and then halts:
PUSHIMM 10 // push the value 10
PUSHIMM 20 // push the value 20
EQUAL // push 0 because 20 != 10
STOP // halt execution

We recommend that you use the commenting style shown in the above example.

Vtop¬

Vbelow Vtop∨

Vbelow Vtop∧

Vbelow Vtop>

Vbelow Vtop<

Vbelow Vtop=

VSP c← SP SP 1+←; c
VSP VSP 1–← ; SP SP 1+←

Vk
Vk Vtop←

Vk FBR+

Vk FBR+ Vtop←

SP SP c+←

HALT 1←

20 10≠

Chapter 1: Introduction to SaM 5/13
1.4 The Simulator
To run a Samcode program, you need to use SaM. This section explains how to start the SaM
simulator and run your Samcode programs inside of it.

1.4.1 How To Start SaM
We have programmed SaM for you to use. Please access the SaM link on the CS212 website. To
run it, follow the steps listed on the website. You should see a window, as shown in Figure 1.2.

1.4.2 GUI Interface
The interface provides a rough approximation of a virtual machine architecture. The Stack and
Program areas correspond to the stack and program memories that Section 2.3 introduces. You
will also see four register values in Registers. We will provide a brief overview of the menus and
buttons to help you get started. For this assignment, you will need to assume that FBR is 0
throughout the execution of a Samcode program. We will discuss more about the FBR and HP
registers for functions and objects in later parts.

1.4.3 Running Samcode
To run a Samcode program, follow these steps:

• Create a Samcode program with a text editor.
• Use the File → Open menu option or Open button to load the file.
• Select your file by using the browser that pops up.
• Press OK in the browser.

Figure 1.2: SaM

http://www.cs.cornell.edu/cs212/

Chapter 1: Introduction to SaM 6/13
• Press the Run button to execute the program. If your program returns a value, the Console
window will report an answer. To change your execution speed, select Run → Execution
Speed.

• Use the Step button to execute each instruction manually, one at a time. If you already ran
the program you will have to reset it using the Reset button.

• Click the Reset button to reset the simulator.
• Click the Capture button to execute the entire program and display a Capture Window that

shows the stack during the execution of the individual instructions.
• Set breakpoints by double clicking on an instruction. If you run and capture a session,

SaM will follow the breakpoints. To disable a breakpoint, double click on the same
instruction.

As you start running examples, you will discover that values that remain in the stack are
overwritten for other runs. Why? The SP starts “below” the old values.

1.4.4 SaM’s Output
There are a few general messages that SaM reports in its console:

• Assembler error: alerts you that SaM does not recognize a particular op-code or operand,
which is stated below the error.

• Exit Code: n: Program terminated normally. The code n gives the return code or the
program answer.

If you execute the program using the Capture button, the Capture Viewer window appears. This
displays the program on the left and the stack view for the different execution stages on the right.
This facility works well for Samcode programs with several instructions.
SaM will report the bottom of the Stack in the Console with the Exit Code. When SaM encounters
a STOP command, it displays the value in address 0. Thus, you should be careful to leave only
value on the stack if you intend to return that value.

1.4.5 Stack
There are some design issues that you might find disconcerting at first. As SaM executes
instructions, you will see values pushed and popped onto the stack in the Stack panel. For
example, run the following Samcode:
PUSHIMM 10
PUSHIMM 20
STOP

As shown in Figure 1.3, after running the program test.sam, SaM has pushed the values 10
and 20 and then stopped. Along with each pushed value, SaM gives the value’s address and type
with the format address:type:value. For example, 1:I:20 means that the value 20 has address 1 and
type I (integer) on the stack. Note that we receive an error code because SaM excepts only one
value to remain on the stack. In the next section, you will learn how to write a Samcode program
that satisfies this constraint. Of course, we have not answered why SaM wants just one value–for
now, consider the stack is where function calls go, and a function generally returns one value.
To keep track of the types, refer to the Help → Stack Colors Reference. For the stack address, keep
track of the SP register in the Registers area. In this assignment, you will see just I for integer
values and M for memory values.

Chapter 1: Introduction to SaM 7/13
1.4.6 Instruction Loader
As you develop your compiler, you will discover some handy tools that SaM sports. For example,
you may wish to try making your own SaM instructions. Rather than recompiling all of SaM, you
add an instruction directly into for a particular session using the Instruction Loader. First,
investigate SaM’s source code to learn how we have written Samcode instructions in Java.
Following the pattern that we used, write your own instruction in Java and compile it into
bytecode, which is a .class file. To load the instruction into SaM, select File→Load
Instruction…, which will pop open a window (Figure 1.3) that prompts you to load the bytecode
file.

1.5 Samcode
As you would write any program, you will write programs in Samcode as a sequence of
instructions. This assignment requires that you will use many of the SaM instructions in Section
1.3.3. However, you will see many more instructions in Instruction.java that we do not
use in this assignment. You will write programs that would occur inside a single function, such as
arithmetic expressions and variable assignments, to perform basic computations.
To calculate 10+20 using SaM, you need to think of the expression in postfix notation as
10 20 +. Postfix notation is form of notation that placed an expression’s operator at the end of
an expression. Knowing that + operates on two values means that you should store the first two
values somewhere, such as your brain, and then add them after encountering the + operator. In
Samcode, you would write this arithmetic operation, as follows:

Figure 1.3: SM’s Stack and Other Output

Chapter 1: Introduction to SaM 8/13
PUSHIMM 10
PUSHIMM 20
ADD
STOP

To help you visualize the results of pushing 10 and 20 onto the stack, refer to Section 1.1. If you
step through this example in the simulator, you will see that the stack pointer (SP register)
contains the value 2, which is one address higher than the address of the last instruction. When the
code issues ADD, both 10 and 20 pop from the stack and SaM pushes the result of 30 into
address 0. Since the 30 is only remaining value in the stack, the simulator will report 30 as the
answer. Note that SP will contain 1, because that address is one higher than the last used element
address. Isn’t that neat?
Now, try a program that performs :
PUSHIMM 1
PUSHIMM 2
PUSHIMM 3
TIMES
ADD
STOP

In this case, Samcode advantageously helps to avoid worrying about operator precedence because
the operators appear after the operands.

1.6 Variables and Assignments
1.6.1 Compilers

For the CS212 project this semester, you will be writing a program called a compiler, which
translates one computer language into another. In our course, your compiler will convert a Java-
like language into Samcode. For example, suppose you were trying to write a compiler to convert
the following Java snippet into Samcode:

Figure 1.4: Instruction Loader

1 2 3×()+

Chapter 1: Introduction to SaM 9/13
int x , y ;
x = 10 ;
y = 20 ;
return (x + y) ; // returns 30

The next sections will demonstrate how to translate such high-level languages into Samcode.

1.6.2 Symbol Table
Writing the Samcode requires a bit of work because of the variables. You must reserve space for
each variable in the stack memory because Samcode does not have explicit variables of its own.
To help keep track of the source program’s variables and their locations, you should manually
draw a symbol table, as shown in Section 1.1. A symbol table is a collection of the program’s
variables plus an additional variable, rv (return variable), that stores the program’s result. In this
case, rv would represent the result of x+y.

To follow changes in stack memory during execution, you should draw another figure to represent
the stack, as shown in Figure 1.5. As your program calls functions and creates object, parts of the
stack are filled with data. For now, we will assume that we are converting code from a main
function, so we will not change the FBR’s initial value of zero. When we add more functions in
Part 3 of the project, we will adjust the FBR. We will not need to worry about the HP until Part 4 of
the project.

1.6.3 Variable Allocation
You need to allocate stack space for the source program’s variables. By leaving the first cell open
for the rv, the result of a program will have a place for SaM to store and return the value. The
main variables are stacked on top of the first cell in the order in which they are declared. The
address of a variable is its cell address on the stack.
So, to encode the declaration statements of the source language (int x and int y), you need to
move SP “up” the stack. You have two choices:

• ADDSP slots: ADDSP will makes slots addresses available on the stack. Because
these cells indicate allocated memory, they are labeled as type M. Previously-stored values
will appear on the stack.

• PUSHIMM value: This instruction will allocate one memory location and initialize it
with value. Typically, you should use 0 for value. This instruction will clear previously
stored values on the stack. SaM already initializes each cell to 0 upon starting.

For our example, we use ADDSP. Since SP starts at 0, you can move the stack pointer up three
cells with ADDSP 3, which leaves space for rv, x, and y. SP will now point to the next free cell

Table 1: Symbol Table

Variable Address

rv 0

x 1

y 2

Chapter 1: Introduction to SaM 10/13
at the address of 3. You may allocate the same amount of space use three PUSHIMM 0
statements.
The following Samcode (add_rel.sam, add_abs.sam) allocates space for three variables:
ADDSP 3
// code to store and retrieve x and y values
// will be developed later
STOP

The state of the stack after running is shown in Figure 1.5. There are two important ideas to note:
• Each cell is labeled with M because cells 0, 1, and 2 are addresses that you use to store and

retrieve values from memory.
• SP points to the cell address 3, which is above the last memory allocation 2:M:0.

If you wish to see the primary difference between approaches, step through this program, which is
stored in allocate.sam:
PUSHIMM 1
PUSHIMM 2
PUSHIMM 3
ADDSP -1
ADDSP -1
ADDSP -1
ADDSP 1
ADDSP 1
ADDSP 1
STOP

Figure 1.5: Stack Memory With Variables

Chapter 1: Introduction to SaM 11/13
SaM will display the initially pushed values after it executes ADDSP 1 three times, as shown in
the two Capture windows in Figure 1.6.

1.6.4 Addressing of Variables
So…how do you write Samcode for the assignment statements in the Java snippet in Section
1.6.1? Also, how do you retrieve a variable value? You have two options: absolute addressing
and relative addressing. In absolute addressing, you do not need to worry about the mysterious
FBR other than you should not change its initial value of 0. When we introduce functions, you will
run into trouble unless you use relative addressing to shift the FBR every time a new function is
called. For now, you will focus on basic expressions that would be written in the body of a
function.

1.6.4.5 Absolute Addressing
STOREABS and PUSHABS use an absolute cell address, which means you can directly access
any location on the stack without worrying about a specific function. For example, global
variables use absolute addresses, as you will see later in the semester.
To store a value on the stack, use STOREABS k, which takes a value from and pushes it
into location k. In your Samcode, you would use the following sequence of instructions:

• PUSHIMM value: Push the value you wish to store.
• STOREABS address: Push value into address.

For example, to store the value of 10 for x in address 1, you would do the following:

Figure 1.6: Allocation and Deallocation of Memory

Vtop

Chapter 1: Introduction to SaM 12/13
PUSHIMM 10
STOREABS 1

To retrieve a value from the stack, use PUSHABS k, which takes the address k and pushes a value
from that location.
For example, to retrieve the value of x, you would do the following:

PUSHABS 1

You will repeat similar instructions to push and place the values of x and y. For assigning each
variable, follow the same process: push the address, push the value, and store the value at the
address.
The following Samcode performs the operations of the Java code-snippet in Figure 1.6.1. As you
read though the example, note how I methodically store and retrieve each variable value.
Although I assign rv a “default” value, you may choose not to do so:

// Absolute addressing, add_abs.sam:

ADDSP 3 // allocate x,y,rv; you may also PUSHIMM 0 three times
PUSHIMM 0 // value to store in rv’s location
STOREABS 0 // store value 0 in address 0
PUSHIMM 10 // value to give x
STOREABS 1 // store value of x
PUSHIMM 20 // value to give y
STOREABS 2 // store value of y
PUSHABS 1 // retrieve value of x
PUSHABS 2 // retrieve value of y
ADD // add values of x and y
STOREABS 0 // store value of x+y in address rv
ADDSP -2 // remove x and y from memory
STOP // halt --> SaM should return 30

To fully understand this approach, step through the code very carefully in the simulator. In
particular, keep track of the SP register. You may also wish to draw your own stack to keep track
of cell entries. Note that this technique limits the generality when accounting for functions, since
each function will have its own variables. The next section demonstrates the technique that we
prefer that you use.

1.6.4.6 Relative Addressing
By using the FBR to keep track of your current method call, you can keep your Samcode very
general. Since we are assuming no other method than our “main,” FBR stays at 0. Judicious use of
the STOREOFF x command provides the best way to manage variables. First, you need to
advance the SP by the number of variables that you have, including the rv. To store a variable’s
value, you push the value and then move it to the correct position in the stack. For instance, since
x is the first variable, you would enter PUSHIMM 10 and then STOREOFF 1. This instruction
moves (which is 10) into the cell with address of 1 (which refers to

). You would enter a similar instruction for y.
After storing the variable values, you need to extract and add them. To extract a value, enter
PUSHOFF k, which pushes the value stored in address FBR+k to the top of the stack. Once you
have both values pushed, you can then add them and move the result to the rv address. Since
SaM will only return the value in the first cell (address 0), you need to alert SaM that you have

Vtop
Vk FBR+ V1 0+ V1= =

Chapter 1: Introduction to SaM 13/13
finished by moving the SP to the second cell (address 1) and stopping the program (STOP). We
have provided the code for you to test:

// Relative addressing, add_rel.sam:

ADDSP 3 // allocate x, y, rv
PUSHIMM 10 // push the value to store for x
STOREOFF 1 // store the value 10 in x
PUSHIMM 20 // push the value to store for y
STOREOFF 2 // store the value 20 in y
PUSHOFF 1 // retrieve the value of x
PUSHOFF 2 // retrieve the value of y
ADD // x+y
STOREOFF 0 // store the value of x+y in rv
ADDSP -2 // remove x and y from the stack
STOP // halt; the return value should return 30

Note how the commands for relative addressing are very similar to those of absolute addressing.
The main difference is whether or not you account for functions, which is not an issue for Part 1.

	Chapter 1: Introduction to SaM
	1.1 Introduction
	1.2 Stack Machine
	1.2.1 SaM
	1.2.2 SaM Values and Types
	1.2.3 SaM Memory

	1.3 SaM Instructions
	1.3.1 Classifications
	1.3.2 The Stack Memory and Stack Pointer
	1.3.3 Instruction Set: “Some of SaM”
	1.3.3.1 ALU Instructions
	1.3.3.2 Stack Manipulation Instructions
	1.3.3.3 Register Save/Restore Instructions
	1.3.3.4 Control Instructions

	1.3.4 SaM Programs

	1.4 The Simulator
	1.4.1 How To Start SaM
	1.4.2 GUI Interface
	1.4.3 Running Samcode
	1.4.4 SaM’s Output
	1.4.5 Stack
	1.4.6 Instruction Loader

	1.5 Samcode
	1.6 Variables and Assignments
	1.6.1 Compilers
	1.6.2 Symbol Table
	1.6.3 Variable Allocation
	1.6.4 Addressing of Variables
	1.6.4.5 Absolute Addressing
	1.6.4.6 Relative Addressing

